4.7 Article

Shape effects of CdS photocatalysts on hydrogen production

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 38, Issue 18, Pages 7224-7231

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.03.173

Keywords

Hydrogen; Cadmium sulfide; Shape effect; Morphology; Ethylenediamine

Funding

  1. NSFC (gs1) [21103106, 21107069]
  2. Construction Capacity Project (gs2) [10160502300]
  3. Shanghai Rising-Star Program (gs3) [10QA1402800]
  4. Dawn (gs4) Program of Shanghai Education Commission [11SG52]

Ask authors/readers for more resources

Granular and lamellar structured cadmium sulfide (CdS) with the shapes of branches, cauliflower and nanorods, were synthesized via a hydrothermal process. During the synthesis, ethylenediamine (EN) was used as a template and deionized water (DIW) as a coordination agent. Experimental results show that the morphology of CdS nanoparticles was controlled by EN concentration, CdS precursor concentration and molar ratio of Cd(NO3)(2)center dot 4H(2)O to thiourea (NH2CSNH2). It was found that the key shape-controlling step is the formation of CdS nuclei via the decomposition of the cadmium-ethylenediamine complex. Various shapes of CdS nanoparticles were obtained based on the concentrations of EN in water. CdS particles synthesized in pure water show granular and lamellar shapes with a mixture of hexagonal and cubic crystal structures. When EN concentration was increased to 30%, branched morphology of CdS particles was observed. Further increasing EN concentration to 70% CdS catalyst particles resulted in a cauliflower-like shape. Finally, CdS nanorod particles with a hexagonal structure were developed when synthesized in a pure EN solution. Although EN concentration plays an important role in the shapes of CdS particles, experimental observation showed that the diameter and aspect ratio of as prepared CdS nanorods were determined by concentrations of CdS precursors. In the course of photocatalytic hydrogen production, nearly 2577 mu mol H-2 was produced over 0.05 g CdS nanorods in 4.0 h. The rate of hydrogen evolution over the CdS nanorods based photocatalyst was approximately 42.6 times higher than that over granular and agglomerated lamellar CdS. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available