4.7 Article

Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 38, Issue 8, Pages 3419-3432

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.12.110

Keywords

Electric vehicle; Hydrogen fuel cell; Endogenous technology learning; TIAM; Cluster approach

Funding

  1. RCUK Energy Programme
  2. Engineering and Physical Sciences Research Council [EP/J016454/1] Funding Source: researchfish
  3. EPSRC [EP/J016454/1] Funding Source: UKRI

Ask authors/readers for more resources

Both fuel cell and electric vehicles have the potential to play a major role in a transformation towards a low carbon transport system that meets travel demands in a cleaner and more efficient way if hydrogen and electricity was produced in a sustainable manner. Cost reductions are central to this challenge, since these technologies are currently too expensive to compete with conventional vehicles based on fossil fuels. One important mechanism through which technology costs fall is learning-by-doing, the process by which cumulative global deployment leads to cost reduction. This paper develops long-term scenarios by implementing global technology learning endogenously in the TIAM-UCL global energy system model to analyse the role of hydrogen and electricity to decarbonise the transport sector. The analysis uses a multi-cluster global technology learning approach where key components (fuel cell, electric battery and electric drive train), to which learning is applied, are shared across different vehicle technologies such as hybrid, plug-in hybrid, fuel cell and battery operated vehicles in cars, light goods vehicles and buses. The analysis shows that hydrogen and electricity can play a critical role to decarbonise the transport sector. They emerge as complementary transport fuels, rather than as strict competitors, in the short and medium term, with both deployed as fuels in all scenarios. However, in the very long-term when the transport sector has been almost completely decarbonised, technology competition between hydrogen and electricity does arise, in the sense that scenarios using more hydrogen in the transport sector use less electricity and vice versa. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available