4.7 Article

A new nickel-ceria composite for direct-methane solid oxide fuel cells

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 38, Issue 9, Pages 3741-3749

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.01.032

Keywords

Solid oxide fuel cells; Anode; Ni-based catalysts; Ceria; Steam reforming of methane; Carbon deposition

Funding

  1. National Science Foundation for Distinguished Young Scholars of China [51025209]
  2. ARC [FT100100134]

Ask authors/readers for more resources

Various Ni-LaxCe1-xOy composites were synthesized and their catalytic activity, catalytic stability and carbon deposition properties for steam reforming of methane were investigated. Among the catalysts, Ni-La0.1Ce0.9Oy showed the highest catalytic performance and also the best coking resistance. The Ni-LaxCe1-xOy catalysts with a higher Ni content were further sintered at 1400 degrees C and investigated as anodes of solid oxide fuel cells for operating on methane fuel. The Ni-La(0.1)Ce(0.9)Oy anode presented the best catalytic activity and coking resistance in the various Ni-LaxCe1-xOy catalysts with different ceria contents. In addition, the Ni-La0.1Ce0.9Oy also showed improved coking resistance over a Ni-SDC cermet anode due to its improved surface acidity. A fuel cell with a Ni-La0.1Ce0.9Oy anode and a catalyst yielded a peak power density of 850 mW cm(-2) at 650 degrees C while operating on a CH4-H2O gas mixture, which was only slightly lower than that obtained while operating on hydrogen fuel. No obvious carbon deposition or nickel aggregation was observed on the Ni-La0.1Ce0.9Oy anode after the operation on methane. Such remarkable performances suggest that nickel and La-doped CeO2 composites are attractive anodes for direct hydrocarbon SOFCs and might also be used as catalysts for the steam reforming of hydrocarbons. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available