4.7 Article Proceedings Paper

Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 5, Pages 4685-4693

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.04.119

Keywords

Durability; Carbon nanofiber (CNF); PtRu catalyst; DMFC

Ask authors/readers for more resources

The chemical stability and durability of PtRu catalysts supported on carbon nanofibers (CNFs) for the anode electrode of a direct methanol fuel cell (DMFC) are investigated by Pt and Ru dissolution tests in sulfuric acid and long-term performance tests of a single cell discharging at a constant current density of 150 mA cm(-2) for approximately 2000 h. A CNF with a herringbone-type structure, which is characterized by the alignment of graphene symmetrically angled to the fiber axis, was selected as the catalyst support because it has an edge-rich surface and a high surface area. In the metal dissolution test, the PtRu/CNF catalysts showed 1.5-2 times lower Ru leaching than a tested commercial catalyst (supported on activated carbon). The results of long-term performance tests also prove the higher durability of the anode catalyst compared with the commercial catalyst, when the anode polarization is compared before and after operation for 2000 h. Some analytical measurements, including X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy were conducted to study the degradation of the catalyst activity. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available