4.7 Article

Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 3, Pages 2535-2545

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.10.079

Keywords

Combined cycle; Kalina cycle; Solid oxide fuel cell; Thermodynamic analysis

Funding

  1. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

A new integrated power generation system driven by the solid oxide fuel cell (SOFC) is proposed to improve the conversion efficiency of conventional energy by using a Kalina cycle to recover the waste heat of exhaust from the SOFC-GT. The system using methane as main fuel consists an internal reforming SOFC, an after-burner, a gas turbine, preheaters, compressors and a Kalina cycle. The proposed system is simulated based on the developed mathematical models, and the overall system performance has been evaluated by the first and second law of thermodynamics. Exergy analysis is conducted to indicate the thermodynamic losses in each components. A parametric analysis is also carried out to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that as compressor pressure ratio increases, SOFC electrical efficiency increases and there is an optimal compressor pressure ratio to reach the maximum overall electrical efficiency and exergy efficiency. It is also found that SOFC electrical efficiency, overall electrical efficiency and exergy efficiency can be improved by increasing air flow rate. Also, the largest exergy destruction occurs in the SOFC followed by the after-burner, the waste heat boiler, the gas turbine. The compressor pressure ratio and air flow rate have significant effects on the exergy destruction in some main components of system. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available