4.7 Article

Effect of preparation conditions on the performance of nano Pt-CuO/C electrocatalysts for methanol electro-oxidation

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 24, Pages 18870-18881

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.10.009

Keywords

Platinum-Copper oxide; Fuel cells; Acidic solution; Methanol oxidation; Microwave irradiation

Ask authors/readers for more resources

Nano PtCuO particles were deposited on Vulcan XC-72R carbon black using the impregnation and microwave irradiation methods. The prepared catalysts were characterized by XRD, TEM and EDX analyses. TEM images indicated that the microwave method provides homogeneously distributed catalyst particles in smaller size, compared to the one prepared by the impregnation method. The electrocatalytic activity of Pt-CuO/C electrocatalysts was investigated to oxidize methanol in 0.5 M H2SO4 solution by applying cyclic voltammetry and chronoamperometry techniques. The oxidation current density of Pt-CuO/C electrocatalyst, prepared by the microwave method, showed two folds increment with a potential shift in the negative direction by 69 and 36 mV at the first and second oxidation peaks, respectively, relative to those at the catalyst prepared by the impregnation method. The effect of varying methanol concentration on the resulting oxidation current density of Pt-CuO/C electrocatalysts was studied. Some kinetic information about the reaction order with respect to methanol and Tafel slope values was calculated. Slower current density decay was observed in the chronoamperogram of Pt-CuO/C electrocatalyst, prepared by the microwave method, reflecting a lower degree of surface poisoning. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available