4.7 Article

Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 22, Pages 17101-17110

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.08.125

Keywords

Solid oxide electrolysis cells; Thermodynamic analysis; Synthetic fuel production

Funding

  1. Programme Commission on Sustainable Energy and Environment, The Danish Council for Strategic Research, via the Strategic Electrochemistry Research Center (SERC) [2104-06-0011]

Ask authors/readers for more resources

A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired hydrocarbon fuel and avoiding damage to the cells. The main parameters of cell operating temperature, pressure, inlet gas composition and reactant utilization are varied to examine how they influence cell thermoneutral and reversible potentials, in situ formation of methane and carbon at the Ni-YSZ electrode, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher reactant utilization. Optimal operating conditions are dependent on the total system design. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available