4.7 Article

Synergistic effects of multiwalled carbon nanotubes and Al on the electrochemical hydrogen storage properties of Mg2Ni-type alloy prepared by mechanical alloying

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 2, Pages 1538-1545

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.10.045

Keywords

Mg2Ni-type alloy; Mechanical alloying; Multiwalled carbon nanotubes; Al substitution; Electrochemical hydrogen storage properties

Funding

  1. China Scholarship Council (China)
  2. UTBM (France)

Ask authors/readers for more resources

Mg2-xAlxNi (x = 0, 0.25) electrode alloys with and without multiwalled carbon nanotubes (MWCNTs) have been prepared by mechanical alloying (MA) under argon atmosphere at room temperature using a planetary high-energy ball mill. The microstructures of synthesized alloys are characterized by XRD, SEM and TEM. XRD analysis results indicate that Al substitution results in the formation of AlNi-type solid solution that can interstitially dissolve hydrogen atoms. In contrast, the addition of MWCNTs hardly affects the XRD patterns. SEM observations show that after co-milling with 5 wt. % MWCNTs, the particle sizes of both Mg2Ni and Mg1.75Al0.25Ni milled alloys are decreased explicitly. The TEM images reveal that ball milling is a good method to cut long MWCNTs into short ones. These MWCNTs aggregate along the boundaries and surfaces of milled alloy particles and play a role of lubricant to weaken the adhesion of alloy particles. The majority of MWCNTs retain their tubular structure after ball milling except a few MWCNTs whose tubular structure is destroyed. Electrochemical measurements indicate that all milled alloys have excellent activation properties. The Mg1.75Al0.25Ni-MWCNTs composite shows the highest discharge capacity due to the synergistic effects of MWCNTs and Al on the electrochemical hydrogen storage properties of Mg2Ni-type alloy. However, the improvement on the electrode cycle stability by adding MWCNTs is unsatisfactory. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available