4.7 Article

Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 22, Pages 16951-16961

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.08.103

Keywords

Hydrogen; Chlamydomonas reinhardtii; Photobioreactors; Nanoparticles

Funding

  1. MIUR (Italian Ministry of University and Research) through the project Metodologie Innovative per la Produzione di Idrogeno da Processi Biologici
  2. Fondo Integrativo Speciale per la Ricerca, FISR [1756]
  3. National Research Council of Italy
  4. TUBITAK (Turkey)

Ask authors/readers for more resources

A new photobioreactor design (110 l) for the biological production of hydrogen with the microalga Chlamydomonas reinhardtii is presented. The photobioreactor (PBR) was made up of 64 tubes (i.d., 27.5 mm, length, 2 m) arranged on an 8 x 8 square pitch cell connected by 64 U-bends for a total length of 133 m. The PBR was contained in a rectangular parallelepiped tank (2.5 x 2 x 2 m) made with isotactic polypropylene, except for the opposite square faces which were made of transparent Plexiglas. The tubes were immersed in a thermostatic water bath and continuously illuminated with artificial light. The culture was circulated with a peristaltic pump. To attain a uniform distribution of light to the cells, we used a suspension of silica nanoparticles that scattered the light supplied by the light bulbs (2 x 2000 W) from the opposite square sides of the photobioreactor. Growth experiments carried out with C. reinhardtii CC124 strain, showed a 23% net increase in the final chlorophyll concentration when the nanoparticle suspension was used. Hydrogen production with the C. reinhardtii strain CC124 was investigated with the new photobioreactor design and carried out using a direct inoculum of sulfur-limited cultures having a residual sulfate concentration below 1 mg l(-1). The mean hydrogen output was 3121.5 +/- 178.9 ml. The reactor fluid dynamic was investigated, and a tri-dimensional light profile inside the PBR is reported. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available