4.7 Article

Development and test of a solar reactor for decomposition of sulphuric acid in thermochemical hydrogen production

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 21, Pages 16615-16622

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.02.136

Keywords

Hydrogen production; Thermochemical cycles; Sulphuric acid decomposition

Funding

  1. European Commission [212470]

Ask authors/readers for more resources

Decomposition of sulphuric acid is a key step of sulphur based thermochemical cycles for hydrogen production by thermal splitting of water. The Hybrid Sulphur Cycle (HyS) consisting of two reaction steps is considered as one of the most promising cycles: firstly, sulphuric acid is decomposed by high temperature heat of 800-1200 degrees C forming sulphur dioxide, which in a second step is used to electrochemically split water. Compared to conventional water electrolysis only about a tenth of the theoretical voltage is required making the HyS one of the most efficient processes to produce hydrogen by concentrated solar radiation. As a result, this thermochemical cycle has the potential to significantly reduce the amount of energy required for water splitting and to efficiently generate hydrogen free of carbon dioxide emissions. The European research project HycycleS aims at a technical realisation of the HyS. One objective of the project is to develop and qualify a solar interface, meaning a device to couple concentrated solar radiation into the endothermal steps of the chemical process. Therefore, a test reactor for decomposition of sulphuric acid by concentrated solar radiation was developed and tested in the solar furnace of DLR in Cologne. Tests in concentrated solar radiation were carried out for temperatures of the honeycomb up to 950 degrees C decomposing sulphuric acid of 50 and 96 weight-percent. Mass and energy flow of the process were calculated in order to determine energy efficiency and chemical conversion. The influence of process parameters like temperature, flow rates and space velocity on chemical conversion and reactor efficiency was analysed in detail. If catalysts like iron oxide (Fe2O3) and mixed oxides (i.e. CuFe2O4) were used a conversion of SO3 to SO2 of more than 80% at a thermal efficiency of over 25% could be reached. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available