4.7 Article

Theoretical considerations on the modelling of transport in a three-phase electrode and application to a proton conducting solid oxide electrolysis cell

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 37, Issue 16, Pages 11579-11594

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.05.023

Keywords

Mathematical modelling; Electrolysis; Porous media; SOEC

Funding

  1. French ANR (Agence Nationale pour la Recherche, France) [ANR-09HPAC-007-01]

Ask authors/readers for more resources

This paper presents a numerical model for fuel cells and electrolysis cells that use cermets as electrodes. The mass and charge continuity equations were demonstrated inside the electrodes and in the divergence term, surface ratios were used instead of more usual volumetric ratios. The Butler-Volmer equation for electrokinetics was used with concentration coefficients in order to predict correctly the concentration effects on the value of the transfer current density in the cermets. In addition, it was considered that the reaction takes place inside all of cermet's volume inste1 ad of a thin layer near the electrolyte. The model was tested for the proton-conducting SOEC technology on a generic cell design and the calculations were performed with COMSOL Multiphysics 4.1 (TM). A parametric analysis was carried out on a proton-conducting SOEC in galvanostatic mode in order to evaluate the influence of parameters on oxygen production across the electrode in the anodic compartment. This analysis showed that the structural parameters of the cermets such as grain radius or volumetric ratios of the conductors play a major role in the distribution of reaction kinetics. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available