4.7 Article

Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 36, Issue 18, Pages 11794-11801

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.06.069

Keywords

Ni-Pd nanocatalysts; Bimetallic; Hydrous hydrazine; Hydrogen generation

Funding

  1. JSPS
  2. AIST

Ask authors/readers for more resources

In this study, we report Ni-Pd bimetallic nanoparticle catalysts (nanocatalyst) (Ni1-xPdx) synthesized by alloying Ni and Pd with varying Pd contents, which exhibit appreciably high H-2 selectivity (> 80% at x = 0.40) from the decomposition of hydrous hydrazine at mild reaction condition with Ni0.60Pd0.40 nanocatalyst, whereas the corresponding monometallic counterparts are either inactive (Pd nanoparticles) or poorly active (Ni nanoparticles exhibit 33% H-2 selectivity). In addition to powder X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) analysis and electron microscopy (TEM/SEM), the structural and electronic characteristics of Ni-Pd nanocatalysts were investigated and established using extended X-ray absorption fine structure (EXAFS) analysis. Unlike the high activity of Ni-Pd nanocatalysts, Pd-M (M = Fe, Co and Cu) bimetallic nanocatalysts exhibit poor catalytic activity. These results imply that alloy composition of Ni-Pd nanocatalysts is critical, where the co-existence of both the metals on the catalyst active surface and the formation of inter-metallic Ni-Pd bond results in high catalytic performance for the decomposition of hydrous hydrazine to hydrogen. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available