4.7 Article

Methane steam reforming in a Pd-Ag membrane reformer: An experimental study on reaction pressure influence at middle temperature

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 36, Issue 2, Pages 1531-1539

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.10.101

Keywords

Methane steam reforming; Membrane reactor; Pd-Ag membrane; Pressure effect; Hydrogen production

Ask authors/readers for more resources

In this experimental work, methane steam reforming (MSR) reaction is performed in a dense Pd-Ag membrane reactor and the influence of pressure on methane conversion, COx-free hydrogen recovery and COx-free hydrogen production is investigated. The reaction is conducted at 450 degrees C by supplying nitrogen as a sweep gas in co-current flow configuration with respect to the reactants. Three experimental campaigns are realized in the MR packed with Ni-ZrO catalyst, which showed better performances than Ni-Al2O3 used in a previous paper dealing with the same MR system. The first one is directed to keep constant the total pressure in both retentate and permeate sides of the membrane reactor. In the second case study, the total retentate pressure is kept constant at 9.0 bar, while the total permeate pressure is varied between 5.0 and 9.0 bar. As the best result of this work, at 450 degrees C and 4.0 bar of total pressure difference between retentate and permeate sides, around 65% methane conversion and 1.2 l/h of COx-free hydrogen are reached, further recovering 80% COx-free hydrogen over the total hydrogen produced during the reaction. Moreover, a study on the influence of hydrogen-rich gas mixtures on the hydrogen permeation through the Pd-Ag membrane is also performed and discussed. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available