4.7 Article

Hydrogen storage properties of Mg-10 wt% Ni alloy co-catalysed with niobium and multi-walled carbon nanotubes

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 36, Issue 1, Pages 571-579

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.08.103

Keywords

Hydrogen storage; Magnesium alloy; Niobium; Catalyst; Mechanical alloying

Funding

  1. CSRIO

Ask authors/readers for more resources

Mg-10 wt% Ni alloys containing up to 1 wt% Nb were fabricated by a casting technique, followed by ball-milling with 5 wt% multi-walled carbon nanotubes. Further mechanical alloying with 1.5, 3, and 5 at % Nb was applied to a cast Mg-10 wt% Ni-370 ppm Nb alloy to investigate the catalytic role of Nb in hydrogen dissociation. The microstructure and distribution of Nb and Mg(2)Ni in the alloys were characterised by SEM. The absorption and desorption kinetics of the samples were measured by Sieverts' apparatus at various temperatures. The results show that addition of Nb during casting accelerates the hydrogen diffusion compared to the cast binary Mg-10 wt% Ni alloy. Moreover, ball-milling of the alloy with metallic niobium leads to the formation of BCC phase of Mg-Nb solid solution, which significantly improves the hydrogenation properties of the alloy. DSC results show that mechanical alloying of Mg-10 wt%Ni-370 ppm Nb with Nb in excess of 1.5 wt% decreases the desorption temperature by approximately 100 C compared to the ball-milled cast alloy. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available