4.7 Article

Studies of off-stoichiometric AB2 metal hydride alloy: Part 2. Hydrogen storage and electrochemical properties

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 36, Issue 17, Pages 11146-11154

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.05.056

Keywords

Hydrogen absorbing materials; Transition metal alloys; Metal hydride electrode; Electrochemical reactions

Funding

  1. Michigan Initiative for Innovation & Entrepreneurship

Ask authors/readers for more resources

In Part 2 of this two-part series of papers, gaseous hydrogen storage and electrochemical properties of three series of alloys with different combinations of Cr/Mn/Co ratios are studied and compared to the structural properties reported in Part 1. As the B/A stoichiometry in each series of alloys increases from 1.8 to 2.2, systematic trends in certain storage properties are found: the hydrogen dissociation pressure and heat of hydride formation increases; the alloy with a AB(2.0) stoichiometry has the highest electrochemical full capacity; and slightly higher and lower B-contents increase the electrochemical high-rate-dischargeability and gaseous phase maximum storage capacity, respectively. Stoichiometric or slightly hyper-stoichiometric AB(2) alloys have lower PCT hysteresis which are expected to reduce pulverization during cycling. The full and high-rate discharge electrochemical capacities correlate well with the maximum and reversible gaseous hydrogen storages, respectively. Slight hyper-stoichiometry increases the high-rate dischargeability. Open circuit voltage, an important parameter in high-power application, is also found to be more relevant to the surface reaction than to the bulk hydride stability. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available