4.7 Article

Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 35, Issue 17, Pages 8848-8854

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.06.033

Keywords

MEC; Electrohydrogenesis; Hydrogen; Methanogenesis; Scale-up

Funding

  1. National Renewable Energy Laboratory (NREL)
  2. King Abdullah University of Science and Technology (KAUST) [KUS-I1-003-13]

Ask authors/readers for more resources

Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m(2)/m(3)). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m(2), cathode surface area; 74 A/m(3)) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of eta(E) = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H-2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available