4.7 Article

Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 35, Issue 9, Pages 4399-4408

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.02.022

Keywords

Hydrogen ICE; Variable valve timing; Bi-fuel; Emissions; Backfire

Ask authors/readers for more resources

Hydrogen-fueled internal combustion engines are a possible solution to make transportation more ecological. Apart from difficulties in production and storage of hydrogen, there are three major bottlenecks in the operation of hydrogen-powered engines: reaching a high power output, reducing NOx emissions at high loads and avoiding backfire. This paper presents an experimental study of the influence of continuously variable valve timing of the intake valves on these bottlenecks. Measurements were performed on a four-cylinder engine that can run on gasoline as well as on hydrogen. The measurements on hydrogen are compared to those on gasoline. For hydrogen, the effects of the cam phasing were investigated at wide open throttle, where load is controlled by the quality of the mixture (equivalence ratio) as well as in throttled mode, where load is defined by the quantity of mixture. Results show that it is possible to optimize the applied control strategy by using variable valve timing as a means to increase the range of both the qualitative and quantitative load control methods, which contributes to an easier switch between both methods. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available