4.7 Review

Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 35, Issue 19, Pages 10218-10238

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.06.029

Keywords

Biohydrogen production; Biophotolysis; Photofermentation; Genetic engineering; Bioreactor

Funding

  1. Nordic Energy Research Program
  2. Royal Norwegian Embassy in New Delhi, India
  3. Defence Research and Development Organization, Govt. of India

Ask authors/readers for more resources

Hydrogen production through biological routes is promising because they are environmentally friendly. Hydrogen production through biophotolysis or photofermentation is usually a two stage process. In the first stage CO2 is utilized for biomass production which is followed by hydrogen production in the second stage in anaerobic/sulfur-deprived conditions. In addition, one-stage photobiological hydrogen production process can be achieved using selected cyanobacterial strains. The major challenges confronting the large scale production of biomass/hydrogen are limited not only on the performance of the photobioreactors in which light penetration in dense cultures is a major bottleneck but also on the characteristics of the organisms. Other dependable factors include area/volume (AN) ratio, mode of agitation, temperature and gas exchange. Photobioreactors of different geometries are reported for biohydrogen production: Tubular, Flat plate, Fermentor type etc. Every reactor has its own advantages and disadvantages. Airlift, helical tubular and flat plate reactors are found most suitable with respect to biomass production. These bioreactors may be employed for hydrogen production with necessary modifications to overcome the existing bottlenecks like gas hold up, oxygen toxicity and poor agitation. This review article attempts to focus on existing photobioreactors with respect to biomass generation and hydrogen production and the steps taken to improve its performance through engineering innovation that definitely help in the future design and construction of photobioreactors. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available