4.7 Article

Effect of organic loading on a novel hydrogen bioreactor

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 35, Issue 1, Pages 81-92

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2009.10.051

Keywords

Biological hydrogen production; Organic loading; Food-to-microorganisms ratio; PCR-DGGE

Ask authors/readers for more resources

This study investigated the impact of six organic loading rates (OLR) ranging from 6.5 gCOD/L-d to 206 gCOD/L-d on the performance of a novel integrated biohydrogen reactor clarifier systems (IBRCSs) comprised a continuously stirred reactor (CSTR) for biological hydrogen production, followed by an uncovered gravity settler for decoupling of solids retention time (SRT) from hydraulic retention time (HRT). The system was able to maintain a high molar hydrogen yield of 2.8 mol H-2/mol glucose at OLR ranging from 6.5 to 103 gCOD/L-d, but dropped precipitously to approximately 1.2 and 1-1 mol H-2/mol glucose for the OLRs of 154 and 206 gCOD/L-d, respectively. The optimum OLR at HRT of 8 IT for maximizing both hydrogen molar yield and volumetric hydrogen production was 103 gCOD/L-d. A positive statistical correlation was observed between the molar hydrogen production and the molar acetate-to-butyrate ratio. Biomass yield correlated negatively with hydrogen yield, although not linearly. Analyzing the food-to-microorganisms (F/M) data in this study and others revealed that, both molar hydrogen yields and biomass specific hydrogen rates peaked at 2.8 mol H-2/mol glucose and 2.3 L/gVSS-d at F/M ratios ranging from 4.4 to 6.4 gCOD/gVSS-d. Microbial community analysis for OLRs of 6.5 and 25.7 gCOD/L-d showed the predominance of hydrogen producers such as Clostridium acetobutyricum, Klebsiella pneumonia, Clostridium butyricum, Clostridium pasteurianum. While at extremely high OLRs of 154 and 206 gCOD/L-d, a microbial shift was clearly evident due to the coexistence of the non-hydrogen producers such as Lactococcus sp. and Pseudomonas sp. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available