4.7 Article

Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 75, Issue -, Pages 262-271

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2014.03.072

Keywords

Nanofluids; Direct absorption collection (DAC); Solar collector; Simulation model

Funding

  1. Important Science and Technology Specific Projects of Zhejiang Province [2012C01022-1]
  2. National Natural Science Foundation of China [51276167]
  3. China International Cooperation Project [2011DFR60190]

Ask authors/readers for more resources

Nanofluids are engineered colloidal suspensions of nanoparticles in base fluids, which have good properties of radiation absorption and heat transfer and are a kind of potential working fluids for solar collector based on direct absorption collection (DAC) concepts. A simulation model of nanofluid solar collector was built based on DAC concepts by solving the radiative transfer equations of particulate media and combining conduction and convection heat transfer equations. The system efficiency and temperature distributions are analyzed by considering the absorption and scattering of nanoparticles and the absorption of the matrix. The simulation results were in accordance with the experiments'. The nanofluids improved the outlet temperature and the efficiency by 30-100 K and by 2-25% than the base fluid. The photothermal efficiency of a 0.01% graphite nanofluid is 122.7% of that of a coating absorbing collector. The study indicated that nanofluids, even of low-content, have good absorption of solar radiation, and can improve the outlet temperatures and system efficiencies. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available