4.7 Article

Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 78, Issue -, Pages 1042-1054

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2014.07.059

Keywords

Nanofluid; Heat exchanger; Twisted tape; Heat transfer enhancement

Ask authors/readers for more resources

In this study, fluid flow of the Al2O3 nanofluid in a horizontal double pipe heat exchanger fitted with modified twisted tapes were experimentally studied under turbulent flow conditions. The experiments with different geometrical progression ratio (GPR) of twists as the new modified twisted tapes and different nanofluid concentration were performed under similar operation condition. Pitch length of the proposed twisted tapes and consequently the twist ratios changed along the twists with respect to the geometrical progression ratio (GPR) whether reducer (RGPR < 1) or increaser (IGPR > 1). Regarding the experimental data, utilization of RGPR twists together with nanofluids tends to increase heat transfer and friction factor by 12% to 52% and 5% to 28% as compared with the tube with typical twisted tapes (GPR = 1) and nanofluid. Contrarily, performances were weakened by using for IGPR twists 0.6 to 0.92 and 0.75 to 0.95. The thermal performances of the heat exchanger with nanofluid and modified twisted tapes were evaluated for the assessment of overall improvement in thermal behavior. Generalized correlations were developed for the estimation of Nusselt number, friction factor and thermal performance factor under turbulent flow conditions. Satisfactory agreement between the present correlations and obtained experimental data validate the proposed correlations. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available