4.7 Article

Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 54, Issue 17-18, Pages 3921-3926

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2011.04.033

Keywords

Heat pipe; Surface wettability; Wick capillarity; Thin film evaporation

Funding

  1. National Science Council, ROC [NSC 99-2221-E-007-029-MY2]

Ask authors/readers for more resources

The effects of copper surface wettability on the evaporation performance of a copper mesh wick were experimentally studied in an operating flat-plate heat pipe. Different degrees of wettability were obtained by varying the exposure times in air after the wicked plates were taken out of the sintering furnace. Three different working fluids: water, methanol and acetone, which possess different figures of merit, were investigated at the same volumetric liquid charge. The surface wettability was quantified by the static contact angle of sessile water drops on a flat copper surface. While the static contact angles of water drops varied from 10 degrees to 40 degrees for different degrees of wettability, the methanol and acetone drops still fully wetted the copper surface. A two-layer 100 + 200 mesh copper wick, 0.26 mm in thickness, was sintered on a 3 mm-thick copper base plate. A glass plate was adopted as the top wall of the heat pipe for visualization. Uniform heating was applied to the base plate near one end, and a cooling water jacket was connected at the other end. With increasing heat load, the evaporative resistance decreased with liquid film recession until a critical heat load showing the minimum evaporative resistance. Afterwards, partial dryout began from the front end of the evaporator. With decreasing wettability, the evaporating water film receded faster with increasing heat load and the critical heat loads were significantly reduced. In contrast, the critical heat loads for methanol and acetone seemed hardly affected by different wettability conditions. The minimum evaporative resistances, however, remained unaffected by surface wettability for all the three working fluids. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available