4.7 Article

CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 53, Issue 1-3, Pages 297-308

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2009.09.029

Keywords

Convective heat transfer coefficient; CFD; RANS; Building; Cube; Turbulent boundary layer

Funding

  1. Government of Flanders
  2. IWT-Flanders (Institute for the Promotion of Innovation by Science and Technology in Flanders)

Ask authors/readers for more resources

Steady Reynolds-Averaged Navier-Stokes (RANS) CFD is used to evaluate the forced convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer, for applications in atmospheric boundary layer (ABL) wind flow around surface-mounted obstacles such as buildings. Two specific configurations are analysed. First, a cube placed in turbulent channel flow at a Reynolds number of 4.6 x 10(3) is considered to validate the numerical predictions by comparison with wind-tunnel measurements. The results obtained with low-Reynolds number modelling (LRNM) show a satisfactory agreement with the experimental data for the windward surface. Secondly, a cube exposed to high-Reynolds number ABL flow is considered. The heat transfer in the boundary layer is analysed in detail. The dimensionless parameter y(center dot), which takes into account turbulence, is found to be more appropriate for evaluating heat transfer than the commonly used y(+) value. Standard wall functions, which are frequently used for high-Reynolds number flows, overestimate the convective heat transfer coefficient (CHTC) significantly (+/- 50%) compared to LRNM. The distribution of the CHTC-U-10 correlation over the windward surface is reported for Reynolds numbers of 3.5 x 10(4) to 3.5 x 10(6) based on the cube height and U-10, where U-10 is the wind speed in the undisturbed flow at a height of 10 m. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available