4.7 Article

Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 52, Issue 15-16, Pages 3464-3472

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2009.02.043

Keywords

CFD; Darcy law; Enthalpy method; Melting; Natural convection; Paraffin; PCM; Phase change; Phase change materials; Sphere; Spherical capsule; Thermal energy storage; Thermal instability; Thermal stratification; Visualization

Funding

  1. Ministry of Science, Research and Technology of the I. R. Iran

Ask authors/readers for more resources

An experimental and computational investigation directed at understanding the role of buoyancy-driven convection during constrained melting of phase change materials (PCM) inside a spherical capsule is reported. The computations are based on an iterative, finite-volume numerical procedure that incorporates a single-domain enthalpy formulation for simulation of the phase change phenomenon. A Darcy's Law-type porous media treatment links the effect of phase change on convection. Paraffin wax n-octadecane was constrained during melting inside a transparent glass sphere through the use of thermocouples installed inside the spheres The melting phase front and melting fraction of the PCM are analyzed and compared with numerical solution obtained from the CFD code Fluent. Following a short period of symmetric melting due to prominence of diffusion, expedited phase change in the top region of the sphere and a wavy surface at the bottom of the PCM are observed. The computational predictions point to the strong thermal stratification in the upper half of the sphere that results from rising of the molten liquid along the inner surface of the sphere thus displacing the colder fluid. The waviness and excessive melting of the bottom of the PCM is shown to be underestimated by the experimental observation. This discrepancy is linked to the use of a support structure to hold the sphere. Measured temperature data and computational results near the bottom indicate the establishment of an unstable fluid layer that promotes chaotic fluctuations and is responsible for waviness of the bottom of the PCM. On the other hand, the comparison between the measured and computed temperatures in the top half of the sphere show the stable nature of the molten liquid layer. The computational results start to deviate from the thermocouple readings as one moves lower from the top of the sphere. This delay in predicting the melting instant is linked to the thermal stratification within the constant temperature bath that encloses the capsule. (C) 2009 Elsevier Ltd. All rights reserved

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available