4.5 Article

An effect of a horizontal buoyant jet on the temperature distribution inside a hot water storage tank

Journal

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW
Volume 44, Issue -, Pages 403-413

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2013.07.009

Keywords

Stratified thermal storage tank; Buoyant jet; Mass transfer; Opposite wall; Vortex; Uniformly distributed injection model

Ask authors/readers for more resources

The hot water storage tank (for stratified thermal storage) with a heat pump draws a lot of attention nowadays due to its high performance. In Japan, reheating of the bath is commonly used, and as this mode, the jet injects horizontally at the middle of the tank, so the temperature distribution of the tank changes complexly with time. Hence a model is needed to simulate this phenomenon, precisely. Additionally, in the process of designing a hot water storage system, it is necessary to simulate temperature distribution quickly, since a test run itself is a time consuming process. In this study, visualization experiments were performed using tracer particles and thermo-sensitive liquid crystals. Experiments were also carried out to find the unsteady temperature distribution in a tank when the positively or negatively buoyant jet was injected horizontally in the middle of the tank whose size is limited and has an influence from the opposite wall. If the momentum effect of the buoyant jet is stronger than that of buoyancy, the buoyant jet impinge against the opposite wall of the tank, and a vortex was observed near the opposite wall. Empirical formulas were proposed to predict the height of the vortex Z(b) under various conditions, such as the momentum and the buoyancy of the buoyant jet, and the Prandtl number of the tank water. Furthermore, the 3D-CFD was carried out to supplement the 3D behavior of the inner tank fluid. A one dimensional model, uniformly distributed injection model, for simulating temperature distribution was proposed. The performance of the model was verified by comparing the results with the unsteady temperature distribution obtained experimentally. The model was also compared with the measurements obtained using a commercially available hot water storage system. Both results showed good agreements. Hence adequacy of the model was clarified. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available