4.6 Article Proceedings Paper

Simultaneous CO2 injection and water production to optimise aquifer storage capacity

Journal

INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
Volume 5, Issue 3, Pages 555-564

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2010.09.002

Keywords

CO2 aquifer storage; Pressure control; Storage resources; Utsira formation; Johansen formation; Water production

Ask authors/readers for more resources

The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential. In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected. One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer. Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available