4.6 Article

Integration of post-combustion capture and storage into a pulverized coal-fired power plant

Journal

INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
Volume 4, Issue 3, Pages 499-510

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2009.12.005

Keywords

CO2 capture; CO2 compression; CCS; Coal-fired power plant; Energy penalty; Partial capture

Funding

  1. International Test Centre for CO2 Capture (ITC)

Ask authors/readers for more resources

Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume-low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MW supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWh(e)/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available