4.6 Article

Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow

Journal

INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
Volume 3, Issue 5, Pages 586-599

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2009.04.007

Keywords

CO2 storage; Parallel computation; Large-scale simulation; Groundwater pressure; Tokyo Bay; Kanto Plain; Earth Simulator

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan

Ask authors/readers for more resources

Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation Of CO2 geologic storage that predicts not only CO2 migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO2 injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact Of CO2 injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km x 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO2 was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO2 plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available