4.6 Article Proceedings Paper

A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations

Journal

INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
Volume 2, Issue 4, Pages 626-639

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2008.02.004

Keywords

Geological CO2 sequestration; Storage capacity; Saline aquifer; Pressure buildup; Numerical simulation

Ask authors/readers for more resources

Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO2) injection into and storage in such closed systems with impervious seals, or semi-closed systems with non-ideal (low permeability) seals, is different from that in open systems, from which the displaced brine can easily escape laterally. in closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO2 injection may have a limiting effect on CO2 storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO2 storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO2 occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With non-ideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO2 storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the true values obtained using detailed numerical simulations of CO2 and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available