4.6 Article

Carto-SOM: cartogram creation using self-organizing maps

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/13658810801958885

Keywords

Cartograms; Neural networks; Kohonen self-organizing maps

Ask authors/readers for more resources

The basic idea of a cartogram is to distort a geographical map by substituting the geographic area of a region by some other variable of interest. The objective is to rescale each region according to the value of the variable of interest while keeping the map, as much as possible, recognizable. There are several algorithms for building cartograms. None of these methods has proved to be universally better than any other, since the trade-offs made to get the correct distortion vary. In this paper we present a new method for building cartograms, based on self-organizing neural networks (Kohonen's self-organizing maps or SOM). The proposed method is widely available and is easy to carry out, and yet has several appealing properties, such as easy parallelization, making up a good tool for geographic data presentation and analysis. We present a series of tests on different problems, comparing the new algorithm with existing ones. We conclude that it is competitive and, in some circumstances, can perform better then existing algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available