4.5 Article

Atomistic and continuum modelling of temperature-dependent fracture of graphene

Journal

INTERNATIONAL JOURNAL OF FRACTURE
Volume 187, Issue 2, Pages 199-212

Publisher

SPRINGER
DOI: 10.1007/s10704-014-9931-y

Keywords

Graphene; Fracture; Crack propagation; Molecular dynamics; J integral

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

This paper presents a comprehensive molecular dynamics study on the effects of nanocracks (a row of vacancies) on the fracture strength of graphene sheets at various temperatures. Comparison of the strength given by molecular dynamics simulations with Griffith's criterion and quantized fracture mechanics theory demonstrates that quantized fracture mechanics is more accurate compared to Griffith's criterion. A numerical model based on kinetic analysis and quantized fracture mechanics theory is proposed. The model is computationally very efficient and it quite accurately predicts the fracture strength of graphene with defects at various temperatures. Critical stress intensity factors in mode I fracture reduce as temperature increases. Molecular dynamics simulations are used to calculate the critical values of integral () of armchair graphene at various crack lengths. Results show that depends on the crack length. This length dependency of can be used to explain the deviation of the strength from Griffith's criterion. The paper provides an in-depth understanding of fracture of graphene, and the findings are important in the design of graphene based nanomechanical systems and composite materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available