4.5 Article

Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation

Journal

INTERNATIONAL JOURNAL OF FRACTURE
Volume 178, Issue 1-2, Pages 113-129

Publisher

SPRINGER
DOI: 10.1007/s10704-012-9753-8

Keywords

Dynamic fracture; Crack branching; Phase field modeling; Coupled multi-field problems; Incremental variational principles

Funding

  1. German Research Foundation (DFG) [Mi 295/11-2]

Ask authors/readers for more resources

The modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations of complex crack topologies including branching. This drawback can be overcome by a diffusive crack modeling based on the introduction of a crack phase field as proposed in Miehe et al. (Comput Methods Appl Mech Eng 19:2765-2778, 2010a; Int J Numer Meth Eng 83:1273-1311, 2010b), Hofacker and Miehe (Int J Numer Meth Eng, 2012). In this work, we summarize basic ingredients of a thermodynamically consistent, variational-based model of diffusive crack propagation under quasi-static and dynamic conditions. It is shown that all coupled field equations, in particular the balance of momentum and the gradient-type evolution equation for the crack phase field, follow as the Euler equations of a mixed rate-type variational principle that includes the fracture driving force as the mixed field variable. This principle makes the proposed formulation extremely compact and provides a perfect basis for the finite element implementation. We then introduce a local history field that contains a maximum energetic crack source obtained in the deformation history. It drives the evolution of the crack phase field. This allows for the construction of an extremely robust operator split scheme that updates in a typical time step the history field, the crack phase field and finally the displacement field. We demonstrate the performance of the phase field formulation of fracture by means of representative numerical examples, which show the evolution of complex crack patterns under dynamic loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available