4.7 Article

On Eshelby tensors in the context of the thermodynamics of open systems: Application to volumetric growth

Journal

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
Volume 48, Issue 12, Pages 2081-2098

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2010.04.003

Keywords

Thermodynamics; Calculus of variation; Transversality conditions; Eshelby tensors; Noether's theorem; Generalized Gibbs-Duhem condition; Volumetric growth; Diffusion of nutrients

Ask authors/readers for more resources

The connections between the notion of Eshelby tensor and the variation of Hamiltonian like action integrals are investigated, in connection with the thermodynamics of continuous open bodies exchanging mass, heat and work with their surrounding. Considering first a homogeneous representative volume element (RVE), it is shown that a possible choice of the Lagrangian density is the material derivative of a suitable thermodynamic potential. The Euler equations of the so built action integral are the state laws written in rate form. As the consequence of the optimality conditions of the resulting Jacobi action, the vanishing of the surface contribution resulting from the general variation of this Hamiltonian action leads to the well-known Gibbs-Duhem condition. A general three-field variational principle describing the equilibrium of heterogeneous systems is next written, based on the zero potential, the stationarity of which delivers a balance law for a generalized Eshelby tensor in a thermodynamic context. Adopting the rate of the grand potential as the lagrangian density, a generalized Gibbs-Duhem condition is obtained as the transversality condition of the thermodynamic action integral, considering a solid body with a movable boundary. The stationnarity condition of the surface part of the thermodynamic action traduces a relationship between the virtual work of the field variables and the virtual work of the material forces at the moving boundary. This framework is applied to the volumetric growth of spherical tissue elements due to the diffusion of nutrients, whereby a growth model relating the growth velocity gradient to a growth like Eshelby stress built from the grand potential is set up. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available