4.6 Article

Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel

Publisher

SPRINGER
DOI: 10.1007/s11661-015-3176-x

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [2201, 24246114, 246860 82, 24656440]
  2. Elements Strategy Initiative for Structural Materials (ESISM) through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  3. ISIJ Research Promotion Grant
  4. Grants-in-Aid for Scientific Research [15H04158, 24656440] Funding Source: KAKEN

Ask authors/readers for more resources

Hydrogen-related fracture behaviors in low-carbon (Fe-0.1wtpctC) and medium-carbon (Fe-0.4wtpctC) martensitic steels were characterized through crystallographic orientation analysis using electron backscattering diffraction. The martensitic steels with lower strength (Fe-0.1C specimen or Fe-0.4C specimen tempered at higher temperature) exhibited transgranular fracture, where fractured surfaces consisted of dimples and quasi-cleavage patterns. Crystallographic orientation analysis revealed that several of the micro-cracks that formed around the prior austenite grain boundaries propagated along {011} planes. In contrast, fracture surface morphologies of the martensitic steels with higher strength (Fe-0.4C specimen tempered at lower temperature) appeared to be intergranular-like. Crystallographic orientation analysis demonstrated that, on a microscopic level, the fracture surfaces comprised the facets parallel to {011} planes. These results suggest that the hydrogen-related fractures in martensitic steels with higher strength are not exactly intergranular at the prior austenite grain boundaries, but they are transgranular fractures propagated along {011} planes close to the prior austenite grain boundaries. A description of the mechanism of hydrogen-related fracture is proposed based on the results. (C) The Minerals, Metals & Materials Society and ASM International 2015

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available