4.6 Article

Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2013.05.038

Keywords

LFP battery; State-of-Charge estimation; Radial basis function neural networks; Orthogonal least-squares algorithm; Adaptive genetic algorithm

Ask authors/readers for more resources

A method to accurately estimate the State-of-Charge (SOC) for LiFePO4 (LFB) batteries is urgently required, to address the issues associated with the increased use of LFP batteries for portable devices. This paper proposes a hybrid method that combines a radial basis function (RBF) neural network, an orthogonal least-squares (OLS) algorithm and an adaptive genetic algorithm (AGA) to estimate the SOC in discharging condition. The OLS algorithm determines the optimal number of nodes in the hidden layer of the RBF neural network. With an optimal RBF neural network structure, the AGA is then used to tune the parameters of the RBF neural network, including the centers and widths of RBF and the connection weights. The trained RBF neural network is then used to estimate the SOC of a LFP battery. In order to demonstrate the effectiveness of the proposed estimation method, the method is tested using LFP batteries under several different discharging conditions. The effectiveness of the proposed method is compared with the Coulomb integration method and a back propagation (BP) neural network. The results show that the proposed method outperforms the other methods. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available