4.4 Article

Depositional ages of clastic metasediments from Samos and Syros, Greece: results of a detrital zircon study

Journal

INTERNATIONAL JOURNAL OF EARTH SCIENCES
Volume 104, Issue 1, Pages 205-220

Publisher

SPRINGER
DOI: 10.1007/s00531-014-1058-x

Keywords

U-Pb dating; Detrital zircon geochronology; Depositional age; Samos; Syros; Greece

Funding

  1. Deutsche Forschungsgemeinschaft [BR 1068/17-1]

Ask authors/readers for more resources

Siliciclastic metasediments from the islands of Samos and Syros, Cycladic blueschist unit, Greece, were studied to determine maximum sedimentation ages. Four samples from the Ampelos unit on Samos yielded age distribution spectra that range from similar to 320 Ma to similar to 3.2 Ga with a dominance of Cambrian-Neoproterozoic zircons (500-1,100 Ma). The youngest well-constrained age groups cluster at 500-550 Ma. Our results allow to link the Samos metasediments with occurrences showing similar age distribution patterns elsewhere in the eastern Mediterranean region (Greece, Turkey, Libya, Israel and Jordan) that record the influx of 'Pan-African' detritus. The lack of post-500-Ma zircons in the Samos samples is in marked contrast to the data from Syros that indicates Triassic to Cretaceous depositional ages. The samples from Syros were collected from the matrix of a meta-ophiolitic melange that is exposed near the top of the metamorphic succession as well as from outcrops representing the basal part of the underlying marble-schist sequence. The zircon populations from Syros were mainly supplied by Mesozoic sources dominated by Triassic protolith ages. Subordinate is the importance of pre-Triassic zircons, but this may reflect bias induced by the research strategy. Sediment accumulation continued until Late Cretaceous time, but the overall contribution of Jurassic to Cretaceous detritus is more limited. Zircon populations are dominated by grains with small degree of rounding suggesting relatively short sediment transportation. Available observations are in accordance with a model suggesting deposition close to the magmatic source rocks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available