4.4 Review

Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion

Journal

INTERNATIONAL JOURNAL OF EARTH SCIENCES
Volume 104, Issue 1, Pages 1-26

Publisher

SPRINGER
DOI: 10.1007/s00531-014-1060-3

Keywords

Alps; Carpathians; Dinarides; Adria; Subduction polarity switch; Slab tearing; Slab gaps; Crust-mantle decoupling; Surface uplift

Funding

  1. DFG projects [HA-2403/3, HA-2403/5, HA-2403/8, RO-2177/4, RO-2177/5]

Ask authors/readers for more resources

Palinspastic map reconstructions and plate motion studies reveal that switches in subduction polarity and the opening of slab gaps beneath the Alps and Dinarides were triggered by slab tearing and involved widespread intracrustal and crust-mantle decoupling during Adria-Europe collision. In particular, the switch from south-directed European subduction to north-directed wrong-way Adriatic subduction beneath the Eastern Alps was preconditioned by two slab-tearing events that were continuous in Cenozoic time: (1) late Eocene to early Oligocene rupturing of the oppositely dipping European and Adriatic slabs; these ruptures nucleated along a trench-trench transfer fault connecting the Alps and Dinarides; (2) Oligocene to Miocene steepening and tearing of the remaining European slab under the Eastern Alps and western Carpathians, while subduction of European lithosphere continued beneath the Western and Central Alps. Following the first event, post-late Eocene NW motion of the Adriatic Plate with respect to Europe opened a gap along the Alps-Dinarides transfer fault which was filled with upwelling astheno-sphere. The resulting thermal erosion of the lithosphere led to the present slab gap beneath the northern Dinarides. This upwelling also weakened the upper plate of the easternmost part of the Alpine orogen and induced widespread crust-mantle decoupling, thus facilitating Pannonian extension and roll-back subduction of the Carpathian oceanic embayment. The second slab-tearing event triggered uplift and peneplainization in the Eastern Alps while opening a second slab gap, still present between the Eastern and Central Alps, that was partly filled by northward counterclockwise subduction of previously unsubducted Adriatic continental lithosphere. In Miocene time, Adriatic subduction thus jumped westward from the Dinarides into the heart of the Alpine orogen, where northward indentation and wedging of Adriatic crust led to rapid exhumation and orogen-parallel escape of decoupled Eastern Alpine crust toward the Pannonian Basin. The plate reconstructions presented here suggest that Miocene subduction and indentation of Adriatic lithosphere in the Eastern Alps were driven primarily by the northward push of the African Plate and possibly enhanced by neutral buoyancy of the slab itself, which included dense lower crust of the Adriatic continental margin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available