4.4 Article

Rapid early-middle Miocene exhumation of the Kazdag Massif (western Anatolia)

Journal

INTERNATIONAL JOURNAL OF EARTH SCIENCES
Volume 98, Issue 8, Pages 1935-1947

Publisher

SPRINGER
DOI: 10.1007/s00531-008-0353-9

Keywords

Fission-track analysis; Thermochronology; North Anatolian fault system; Aegean Sea; Detachment fault

Funding

  1. MIUR (Italian Dept. of Public Education, University and Research)
  2. Turkish Academy of Sciences

Ask authors/readers for more resources

Apatite fission-track analyses indicate that the Kazdag. Massif in northwestern Anatolia was exhumed above the apatite partial annealing zone between 20 and 10 Ma (i.e. early-middle Miocene), with a cluster of ages at 17-14 Ma. The structural analysis of low-angle shear zones, high-angle normal faults and strike-slip faults, as well as stratigraphic analysis of upper-plate sedimentary successions and previous radiometric ages, point to a two-stage structural evolution of the massif. The first stage encompassing much of the rapid thermal evolution of the massif-comprised late Oligocene-early Miocene low-angle detachment faulting and the associated development of small supradetachment grabens filled with a mixture of epiclastic, volcaniclastic and volcanic rocks (Kucukkuyu Fm.). The second stage (Plio-Quaternary) has been dominated by (i) strike-slip faulting related to the westward propagation of the North Anatolian fault system and (ii) normal faulting associated with present-day extension. This later stage affected the distribution of fission-track ages but did not have a component of vertical (normal) movement large enough to exhume a new partial annealing zone. The thermochronological data presented here support the notion that Neogene extensional tectonism in the northern Aegean region has been episodic, with accelerated pulses in the early-middle Miocene and Plio-Quaternary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available