4.4 Article

A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica)

Journal

INTERNATIONAL JOURNAL OF EARTH SCIENCES
Volume 98, Issue 1, Pages 19-29

Publisher

SPRINGER
DOI: 10.1007/s00531-008-0318-z

Keywords

Arctica islandica; Shell growth; Climate variability; Paleo-productivity; Gulf of Maine; North Atlantic Oscillation (NAO)

Funding

  1. German Research Foundation (DFG)
  2. National Science Foundation [NSF ATM-0222553]

Ask authors/readers for more resources

To investigate environmental variability during the late Holocene in the western Gulf of Maine, USA, we collected a 142-year-old living bivalve (Arctica islandica) in 2004, and three fossil A. islandica shells of the Medieval Warm Period (MWP) and late MWP / Little Ice Age (LIA) period (corrected C-14(AMS) = 1030 +/- A 78 ad; 1320 +/- A 45 ad; 1357 +/- A 40 ad) in 1996. We compared the growth record of the modern shell with continuous plankton recorder (CPR) time-series (1961-2003) from the Gulf of Maine. A significant correlation (r (2) = 0.55; p < 0.0001) exists between the standardized annual growth index (SGI) of the modern shell and the relative abundance of zooplankton species Calanus finmarchicus. We therefore propose that SGI data from A. islandica is a valid proxy for paleo-productivity of at least one major zooplankton taxa. SGIs from these shells reveal significant periods of 2-6 years (NAO-like) based on wavelet analysis, multitaper method (MTM) analysis and singular spectrum analysis (SSA) during the late Holocene. Based on established physical oceanographic observation in the Gulf of Maine, we suggest that slope water variability coupled with North Atlantic Oscillation (NAO) dynamics is primarily responsible for the observed SGI variability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available