4.4 Review

Quantifying the role of sandy-silty sediments in generating slope failures during earthquakes: example from the Algerian margin

Journal

INTERNATIONAL JOURNAL OF EARTH SCIENCES
Volume 98, Issue 4, Pages 769-789

Publisher

SPRINGER
DOI: 10.1007/s00531-008-0373-5

Keywords

Algerian margin; Slope stability; Potential of liquefaction; Earthquakes

Funding

  1. EURODOM European Project [RTN2-2001-00281]
  2. IFREMER
  3. Agence Nationale de Recherche (ISIS project)
  4. officers and crew during MARADJA 2003
  5. PRISMA

Ask authors/readers for more resources

The Algerian margin is a seismically active region, where during the last century, several large magnitude earthquakes took place. This study combines geotechnical and sedimentological data with numerical modelling to quantitatively assess the present-day slope stability of the Algerian margin. Geotechnical laboratory tests, such as cyclic triaxial tests, oedometric tests and vane shear tests were carried out on sediment cores collected on the study area. The liquefaction potential of a sediment column located about 30 km from the BoumerdSs earthquake epicentre of 21st May 2003 was evaluated theoretically for an earthquake of M (w) = 6.8. We show that thin sand and silt beds such as those described on recovered sediment cores are the main cause of sediment deformation and liquefaction during earthquakes. Numerical calculations showed that the slope failure may occur during an earthquake characterised by a PGA in excess of 0.1g, and also that, under a PGA of 0.2g liquefaction could be triggered in shallow silty-sandy deposits. Moreover, comparison of the predicted slope failure with failure geometries inferred from seafloor morphology showed that earthquakes and subsequent mass movements could explain the present-day morphology of the study area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available