4.1 Article

Alterations of visual and auditory evoked potentials in fragile X syndrome

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijdevneu.2014.05.003

Keywords

Fragile X syndrome; Intellectual disability; Autism; Sensory information processing; Auditory evoked potential; Visual evoked potential

Funding

  1. Scottish Rite Charitable Foundation of Canada [12112]

Ask authors/readers for more resources

Background: Fragile X Syndrome (FXS) is the most common monogenic form of intellectual disability and one of the few known monogenic causes of autism. It is caused by a trinucleotide repeat expansion in the FMR1 ('Fragile X Mental Retardation 1') gene, which prevents expression of the 'Fragile X Mental Retardation Protein' (FMRP). In FXS, the absence of FMRP leads to altered structural and functional development of the synapse, while preventing activity-based synapse maturation and synaptic pruning, which are essential for normal brain development and cognitive development. Possible impairments in information processing can be non-invasively investigated using electrophysiology. Methods: We compared auditory (AEP) and visual (VEP) evoked potentials in twelve adolescents and young adults (10-22 years) affected by FXS to healthy controls matched by chronological age (N = 12) and developmental age of cognitive functioning (N = 9; 5-7 years), using analysis of variance. Results: In the visual modality, the N70 and N2 amplitude have been found increased in FXS in comparison. to the chronological, but not the developmental control group at occipital sites, whereas in the auditory modality N1, P2 and N2 amplitude as well as N2 latency have been found increased in FXS, relative to both chronological and developmental control groups at mid-central sites. Conclusions: The AEP/VEP profile suggests disruptions in sensory processing specific to FXS that exceed immaturity of physiological activity. In addition, the auditory modality seems to be more affected than the visual modality. Results are discussed in light of possible underlying neuronal mechanisms, including deficits in synaptic pruning and neuronal inhibition that might account for a hyperreactive nervous system in FXS. (C) 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available