4.0 Article

Engineering metabolic pathways in plants by multigene transformation

Journal

INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY
Volume 57, Issue 6-8, Pages 565-576

Publisher

UNIV BASQUE COUNTRY UPV-EHU PRESS
DOI: 10.1387/ijdb.130162pc

Keywords

direct DNA transfer; multigene transformation; metabolic pathway; genetic engineering

Funding

  1. Ministerio de Ciencia e Innovacion [BFU2007-61413, BIO2011-23324, BIO02011-22525,, PIM2010PKB-0074, BIO2007-30738-E, BIO2011-22525]
  2. European Union Framework 7 Program [222716]
  3. European Research Council IDEAS Advanced Grant Program
  4. European Cooperation in Science and Technology [FA0804]
  5. RecerCaixa
  6. ICREA Funding Source: Custom

Ask authors/readers for more resources

Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available