4.0 Article

DNA methylation establishment during oocyte growth: mechanisms and significance

Journal

INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY
Volume 56, Issue 10-12, Pages 867-875

Publisher

UNIV BASQUE COUNTRY UPV-EHU PRESS
DOI: 10.1387/ijdb.120152gk

Keywords

DNA methylation; histone modification; epigenomics; germ cell; genomic imprinting

Funding

  1. Biotechnology and Biological Sciences Research Council
  2. Medical Research Council of the United Kingdom
  3. European Union
  4. Polish Ministry of Science and Higher Education (Mobility Plus Programme) [609/MOB/2011/0]
  5. MRC [G0800013] Funding Source: UKRI
  6. Medical Research Council [G0800013] Funding Source: researchfish

Ask authors/readers for more resources

DNA methylation in the oocyte has a particular significance: it may contribute to gene regulation in the oocyte and marks specific genes for activity in the embryo, as in the case of imprinted genes. Despite the fundamental importance of DNA methylation established in the oocyte, knowledge of the mechanisms by which it is conferred and how much is stably maintained in the embryo has remained very limited. Next generation sequencing approaches have dramatically altered our views on DNA methylation in oocytes.They have revealed that most methylation occurs in gene bodies in the oocyte.This observation ties in with genetic evidence showing that transcription is essential for methylation of imprinted genes, and is consistent with a model in which DNA methyltransferases are recruited by the histone modification patterns laid down by transcription events.These findings lead to a new perspective that transcription events dictate the placing and timing of methylation in specific genes and suggest a mechanism by which methylation could be coordinated by the events and factors regulating oocyte growth.With these new insights into the de novo methylation mechanism and new methods that allow high resolution profiling of DNA methylation in oocytes, we should be in a position to investigate whether and how DNA methylation errors could arise in association with assisted reproduction technologies or in response to exposure to environmental toxins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available