4.0 Article

KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-β superfamily proteins

Journal

INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY
Volume 56, Issue 5, Pages 351-356

Publisher

U B C PRESS
DOI: 10.1387/ijdb.123514sm

Keywords

KDEL; ER retention signal; Nodal; BMP; TGF-beta superfamily

Funding

  1. Shizuoka Research Institute
  2. Grants-in-Aid for Scientific Research [22770204] Funding Source: KAKEN

Ask authors/readers for more resources

Most endoplasmic reticulum (ER)-retained proteins contain a carboxy-terminal signal sequence called the ER retention signal motif such as the Lys-Asp-Glu-Leu (KDEL) motif. Using this molecular mechanism, we developed a new dominant-negative assay, designated the KDEL-tag trap assay, to negatively regulate secretion of disulfide bond-dependent protein dimers, as typified by TGF-beta superfamily proteins. First, we tested this method on the Nodal protein Xnr5, which is a well-studied mesoderm inducer in vertebrates. Tagging of Xnr5 protein with KDEL at the carboxy-terminus effectively blocked the secretion of Xnr5, resulting in complete inhibition of mesoderm induction in Xenopus embryogenesis. Second, we examined the usefulness of the KDEL-tag trap assay on BMPs, which are well-known negative regulators of neural induction and ventralizing factors during early development, and demonstrated that the functions of the BMP family proteins BMP4 and ADMP were blocked by the KDEL-tag trap assay. Moreover, the technical feasibility of the KDEL-tag trap assay was confirmed in a cell culture system using mouse osteoblasts. Taken together, these results suggest that the KDEL-tag trap assay can be adapted to inhibit a variety of plasma membrane or secreted proteins of a multimeric nature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available