4.7 Article

A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system

Journal

METABOLIC ENGINEERING
Volume 27, Issue -, Pages 29-37

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2014.10.007

Keywords

Metabolism; Cell-free transcription-translation; E. coli; Hexametaphosphate; Maltodextrin; Phosphorylation

Funding

  1. Office of Naval Research, United States [N00014-13-1-0074]

Ask authors/readers for more resources

A new cost-effective metabolism providing an ATP-regeneration system for cell-free protein synthesis is presented. Hexametaphosphate, a polyphosphate molecule, is used as phosphate donor together with maltodextrin, a polysaccharide used as carbon source to stimulate glycolysis. Remarkably, addition of enzymes is not required for this metabolism, which is carried out by endogenous catalysts present in the Escherichia coli crude extract. This new ATP regeneration system allows efficient recycling of inorganic phosphate, a strong inhibitor of protein synthesis. We show that up to 1.34-1.65 mg/mL of active reporter protein is synthesized in batch-mode reaction after 5 h of incubation. Unlike typical hybrid in vitro protein synthesis systems based on bacteriophage transcription, expression is carried out through E. colt promoters using only the endogenous transcription-translation molecular machineries provided by the extract. We demonstrate that traditional expensive energy regeneration systems, such as creatine phosphate, phosphoenolpyruvate or phosphoglycerate, can be replaced by a cost-effective metabolic scheme suitable for cell-free protein synthesis applications. Our work also shows that cell-free systems are useful platforms for metabolic engineering. (C) 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available