4.6 Article

Adaptative Progressive Damage Modeling for Large-scale Composite Structures

Journal

INTERNATIONAL JOURNAL OF DAMAGE MECHANICS
Volume 21, Issue 3, Pages 441-462

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1056789511400928

Keywords

finite element; composite; damage; progressive damage modeling; large-scale structure

Funding

  1. European Union

Ask authors/readers for more resources

Progressive damage modeling (PDM) is a well-established methodology for the prediction of damage initiation and evolution in composite structures. However, as conventional PDM methodology involves a large post-processing procedure, it is impractical for application in large-scale structures due to the high computational cost it requires. In this study, the local character of nonlinearity, due to the scale of the damage topology compared to the size of the entire structure, is exploited to propose proper modifications in the 'classical' PDM methodology. Specifically, the sub-modeling technique principles are combined and integrated in the PDM methodology and the appropriate modifications required are discussed. Furthermore, two damage prediction indices, which are related to the criticality of damage state at specific sub-areas (material layers) of the structure are introduced, in order to achieve significant reductions of the required computational time. Both the improvements make the application of PDM in large-scale composite structures practically feasible; this is demonstrated in the case of a generic composite shear joint whose numerical model comprises over a million degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available