4.4 Article

Decentralised energy-based hybrid control for the multi-RTAC system

Journal

INTERNATIONAL JOURNAL OF CONTROL
Volume 83, Issue 8, Pages 1701-1709

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00207179.2010.490598

Keywords

rotational; translational proof-mass actuator; hybrid control; impulsive systems; Euler-Lagrange systems; dynamic compensation

Ask authors/readers for more resources

The concept of decentralised energy-based hybrid control involves hybrid dynamic subcontrollers with discontinuous states that individually control each subsystem of a large interconnected dynamical system. Specifically, each subcontroller accumulates the emulated energy and when the states of the subcontroller coincide with a high emulated energy level, then we can reset these states to remove the emulated energy so that the emulated energy is not returned to the subsystem. The real physical energy of each subsystem in this case is constantly dissipated through the motion of the actuators due to the subcontroller state resettings. In this article, we experimentally implement the decentralised energy-based hybrid control framework on the multi-rotational/translational proof mass actuator (RTAC) system. We discuss the hardware used and the experimental testbed involving three RTAC carts connected by the springs. This testbed presents a unique experimental platform for studying benchmark problems in decentralised nonlinear control design. Finally, we present experimental results using decentralised energy-based hybrid controllers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available