4.7 Article

A Basis Illumination Approach to BRDF Measurement

Journal

INTERNATIONAL JOURNAL OF COMPUTER VISION
Volume 90, Issue 2, Pages 183-197

Publisher

SPRINGER
DOI: 10.1007/s11263-008-0151-7

Keywords

Reflectance; Computational illumination; Object scanning and acquisition; Optics; Compressive sensing

Ask authors/readers for more resources

Realistic descriptions of surface reflectance have long been a topic of interest in both computer vision and computer graphics research. In this paper, we describe a novel high speed approach for the acquisition of bidirectional reflectance distribution functions (BRDFs). We develop a new theory for directly measuring BRDFs in a basis representation by projecting incident light as a sequence of basis functions from a spherical zone of directions. We derive an orthonormal basis over spherical zones that is ideally suited for this task. BRDF values outside the zonal directions are extrapolated by re-projecting the zonal measurements into a spherical harmonics basis, or by fitting analytical reflection models to the data. For specular materials, we experiment with alternative basis acquisition approaches such as compressive sensing with a random subset of the higher order orthonormal zonal basis functions, as well as measuring the response to basis defined by an analytical model as a way of optically fitting the BRDF to such a representation. We verify this approach with a compact optical setup that requires no moving parts and only a small number of image measurements. Using this approach, a BRDF can be measured in just a few minutes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available