4.2 Article

Large eddy simulation of separation control over a backward-facing step flow by suction

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10618562.2011.558010

Keywords

backward-facing step (BFS) flow; large eddy simulation (LES); suction; separation control; reattachment length

Funding

  1. National Natural Science Foundation of China [59895410]

Ask authors/readers for more resources

Separation control over a backward-facing step (BFS) flow by continuous suction was numerically investigated using the turbulence model of large eddy simulation (LES). The effect of suction control on the flow fields was scrutinised by altering the suction flow coefficient, and the results indicate that suction is not only very effective in shortening the reattachment length but also very influential in reducing the tangential velocity gradient and turbulence fluctuations of the reattached flows. With increasing increments of the absolute suction flow coefficient, the effect of suction control is more significant. Furthermore, the detailed flow fields (including the time-averaged stream and velocity fields) and turbulence characteristics (including the time-averaged resolved kinetic energy and RMS velocity) for the BFS models with or without suction are presented to discuss the mechanism of suction control. Comparisons of the time-averaged statistics between the numerical simulations and corresponding experiments are conducted, and it shows that the LES based on the dynamic kinetic energy subgrid-scale model (DKEM) can acquire exact results. Therefore, feasibility of the numerical methods to simulate suction-controlled models is validated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available