4.2 Article

Transport properties of heterogeneous materials. Combining computerised X-ray micro-tomography and direct numerical simulations

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10618561003727512

Keywords

permeability; X-ray micro-tomography; porous media; numerical methods; lattice-Boltzmann; finite difference

Ask authors/readers for more resources

Feasibility of a method for finding flow permeability of porous materials, based on combining computerised X-ray micro-tomography and numerical simulations, is assessed. The permeability is found by solving fluid flow through the complex 3D pore structures obtained by tomography for actual material samples. We estimate overall accuracy of the method and compare numerical and experimental results. Factors contributing to uncertainty of the method include numerical error arising from the finite resolution of tomographic images and the rather small sample size available with the present tomographic techniques. The total uncertainty of computed values of permeability is, however, not essentially larger than that of experimental results. We conclude that the method provides a feasible alternative for finding fluid flow properties of the kind of materials studied. It can be used to estimate all components of permeability tensor and is useful in cases where direct measurements are not achievable. Analogous methods can be applied to other modes of transport, such as diffusion and heat conduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available